Embedding and classifying test execution traces using neural networks
نویسندگان
چکیده
Classifying test executions automatically as pass or fail remains a key challenge in software testing and is referred to the oracle problem. It being attempted solve this problem with supervised learning over execution traces. A programme instrumented gather traces sequences of method invocations. small fraction programme's labelled verdicts. Execution are then embedded fixed length vectors neural network (NN) component that uses line-by-line information classify designed. The classification accuracy approach evaluated using subject programs from different application domains—1. Module Ethereum Blockchain, 2. PyTorch deep framework, 3. Microsoft SEAL encryption library components, 4. Sed stream editor, 5. Nine protocols Linux packet identifier, L7-Filter 6. Utilities library, commons-lang for Java. For all programs, it was found had high precision, recall specificity, averaging 93%, 94% 96%, respectively, while only training an average 14% total Experiments show proposed NN-based promising classifying domains.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Validating Distributed System Test Execution Correctness via System Execution Traces
Effective validation of quality-of-service (QoS) properties (such as event prioritization, latency, and throughput) in distributed real-time and embedded (DRE) system requires evaluating system capabilities in representative execution environments. This validation process typically involves executing DRE systems composed of many software components on many hardware components connected via netw...
متن کاملClassifying NBA Offensive Plays Using Neural Networks
The amount of raw information available for basketball analytics has been given a great boost with the availability of player tracking data. This facilitates detailed analyses of player movement patterns. In this paper, we focus on the difficult problem of offensive playcall classification. While outstanding individual players are crucial for the success of a team, the strategies that a team ca...
متن کاملMonitoring Execution Traces using Metric Alternating Automata
We present an automata based verification framework to monitor a running system against a high level specification. Our framework includes specification formalisms to express system properties and verification algorithms to check an execution trace of a system against the intended behavior. Linear Temporal Logic (LTL) is a widely used specification language to express temporal properties of a s...
متن کاملNeural networks classifying symbolic data
A very successful approach in machine learning are neural networks. They learn an unknown regularity between real vector spaces, given a finite set of examples. Hence they can be applied in different areas such as signal processing, speech recognition, or time series prediction, to name just a few. Furthermore, a mathematical foundation, more precisely, their universal approximation ability, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IET Software
سال: 2021
ISSN: ['1751-8806', '1751-8814']
DOI: https://doi.org/10.1049/sfw2.12038